Part Number Hot Search : 
2SA19 40200 2SB12 P4KE220 090RDA1 CDK2308 S60JC10V 2SB12
Product Description
Full Text Search
 

To Download PM200CS1D060 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
PM200CS1D060
FEATURE
Inverter + Drive & Protection IC * 3 phase 200A/600V CSTBTTM (The Current senser and the thermal senser with a build-in CSTBTTM.) * Monolithic gate drive & protection logic * Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage
APPLICATION General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
120 7 106 0.3 10.6 6.5 5-2.54
2-2.54
2-2.54
23.79
10.16
10.16
8.5
2-2.54
10.16
16.5
1
4
7
10
15
67.4 5.57 9
V U N P
2-5.5 MOUNTING HOLES
50
39
25
W
2.5
15
19
19
19
19
5-M4 NUT
(10)
16.5
Terminal code
11.6
LABEL
1. VWPC 2. WP 3. VWP1 4. VVPC 5. VP 6. VVP1 7. VUPC 8. UP 9. VUP1 10. VNC
31.5 + 1 - 0.5
11. 12. 13. 14. 15.
VN1 WN VN UN Fo
28
30
May 2009 1
50
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
Rfo = 1.5k Fo Rfo VNC WN VN1 VN UN
WP VWPC
VP VWP1 VVPC VVP1 VUPC
UP VUP1
Gnd In
Fo Vcc
Gnd In
Fo Vcc
Gnd In
Fo Vcc
Gnd In
Vcc
Gnd In
Vcc
Gnd In
Vcc
Gnd
Si Out
OT
Gnd
Si Out
OT
Gnd
Si Out
OT
Gnd
Si Out
OT
Gnd
Si Out
OT
Gnd
Si Out
OT
N
W
V
U
P
MAXIMUM RATINGS (Tj = 25C, unless otherwise noted) INVERTER PART
Symbol VCES IC ICP PC Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature Condition VD = 15V, VCIN = 15V TC = 25C TC = 25C TC = 25C (Note-1) (Note-1) Ratings 600 200 400 694 -20 ~ +150 Unit V A A W C
*: Tc measurement point is just under the chip.
CONTROL PART
Symbol VD VCIN VFO IFO Parameter Supply Voltage Input Voltage Fault Output Supply Voltage Fault Output Current Condition Applied between : VUP1-VUPC, VVP1-VVPC VWP1-VWPC, VN1-VNC Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN * VN * WN-VNC Applied between : FO-VNC Sink current at FO terminals Ratings 20 20 20 20 Unit V V V mA
May 2009 2
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
TOTAL SYSTEM
Parameter Supply Voltage Protected by VCC(PROT) SC VCC(surge) Supply Voltage (Surge) Storage Temperature Tstg Isolation Voltage Viso Symbol Condition VD = 13.5 ~ 16.5V Inverter Part, Tj = +125C Start Applied between : P-N, Surge value 60Hz, Sinusoidal, Charged part to Base, AC 1 min. Ratings 400 500 -40 ~ +125 2500 Unit V V C Vrms
THERMAL RESISTANCES
Symbol Rth(j-c)Q Rth(j-c)F Rth(c-f) Parameter Junction to case Thermal Resistances Contact Thermal Resistance Condition Inverter IGBT part (per 1 element) Inverter FWDi part (per 1 element) Case to fin, (per 1 module) Thermal grease applied (Note-1) (Note-1) (Note-1) Min. -- -- -- Limits Typ. -- -- -- Max. 0.18 0.27 0.046 Unit
C/W
(Note-1) Tc (under the chip) measurement point is below. arm axis X Y UP IGBT FWDi 21.4 21.4 -4.8 4.9 VP IGBT FWDi 65.0 65.0 -4.8 4.9 WP IGBT FWDi 90.0 90.0 -4.8 4.9 UN IGBT FWDi 36.0 36.0 -0.6 -10.8 VN IGBT FWDi 51.0 51.0 -0.6 -10.8
(unit : mm) WN IGBT FWDi 76.0 76.0 -0.6 -10.8
Bottom view
Y
X
P
N
U
V
W
ELECTRICAL CHARACTERISTICS (Tj = 25C, unless otherwise noted) INVERTER PART
Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Parameter Collector-Emitter Saturation Voltage FWDi Forward Voltage Condition VD = 15V, IC = 200A VCIN = 0V, Pulsed (Fig. 1) -IC = 200A, VD = 15V, VCIN = 15V VD = 15V, VCIN = 0V15V VCC = 300V, IC = 200A Tj = 125C Inductive Load VCE = VCES, VD = 15V (Fig. 5) Tj = 25C Tj = 125C (Fig. 2) Min. -- -- -- 0.4 -- -- -- -- -- -- Limits Typ. 1.90 1.90 1.90 0.8 0.3 0.4 1.4 0.3 -- -- Max. 2.60 2.70 2.90 1.8 0.6 1.0 2.4 0.6 1 10 Unit V V
Switching Time
s
(Fig. 3,4) Tj = 25C Tj = 125C
Collector-Emitter Cutoff Current
mA
May 2009 3
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
CONTROL PART
Symbol ID Vth(ON) Vth(OFF) SC toff(SC) OT OT(hys) UV UVr IFO(H) IFO(L) tFO Parameter Circuit Current Input ON Threshold Voltage Input OFF Threshold Voltage Short Circuit Trip Level Short Circuit Current Delay Time Over Temperature Protection Supply Circuit Under-Voltage Protection Fault Output Current Minimum Fault Output Pulse Width output output output output VD = 15V, VCIN = 15V Condition VN1-VNC V*P1-V*PC Min. -- -- 1.2 1.7 300 -- 135 -- 11.5 -- -- -- 1.0 Limits Typ. 6 2 1.5 2.0 -- 1.0 -- 20 12.0 12.5 -- 10 1.8 Max. 12 4 1.8 2.3 -- -- -- -- 12.5 -- 0.01 15 -- Unit mA V A s C V mA ms
Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN * VN * WN-VNC -20 Tj 125C, VD = 15V (Fig. 3,6) VD = 15V Detect Temperature of IGBT chip -20 Tj 125C VD = 15V, VCIN = 15V VD = 15V (Fig. 3,6) Trip level Hysteresis Trip level Reset level (Note-2) (Note-2)
(Note-2) Fault Fault Fault Fault
is given only when the internal SC, OT & UV protection. of SC, OT & UV protection operate by lower arms. of SC protection given pulse. of OT, UV protection given pulse while over trip level.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol -- -- Parameter Mounting torque Weight Mounting part Main terminal part -- Condition screw : M5 screw : M4 Min. 2.5 1.5 -- Limits Typ. 3.0 1.7 400 Max. 3.5 2.0 -- Unit N*m g
RECOMMENDED CONDITIONS FOR USE
Symbol VCC VD VCIN(ON) VCIN(OFF) fPWM tdead Parameter Supply Voltage Control Supply Voltage Input ON Voltage Input OFF Voltage PWM Input Frequency Arm Shoot-through Blocking Time Condition Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC VWP1-VWPC, VN1-VNC (Note-3) Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN * VN * WN-VNC Using Application Circuit of Fig. 8 For IPM's each input signals (Fig. 7) Recommended value 400 15.0 1.5 0.8 9.0 20 2.0 Unit V V V kHz s
(Note-3) With ripple satisfying the following conditions: dv/dt swing 5V/s, Variation 2V peak to peak 5V/s 2V 15V GND
May 2009 4
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
PRECAUTIONS FOR TESTING 1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing "SC" tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W,B)
IN Fo IN Fo
P, (U,V,W,B)
VCIN
(0V)
V
Ic
VCIN
(15V)
V
-Ic
VD (all)
U,V,(N)
VD (all)
U,V,W,B, (N)
Fig. 1 VCE(sat) Test
Fig. 2 VEC, (VFM) Test
a) Lower Arm Switching
P
VCIN (15V) VCIN
Signal input (Upper Arm) Signal input (Lower Arm)
Fo
trr
U,V
VCE Irr Ic 90%
CS
Vcc 90%
N
b) Upper Arm Switching
VCIN Signal input (Upper Arm) Signal input (Lower Arm)
VD (all)
P
Ic
10% tc(on) VCIN
10%
10% tc(off)
10%
U,V
CS
Vcc
td(on)
tr
td(off)
tf
VCIN (15V)
Fo
(ton = td(on) + tr)
N
(toff = td(off) + tf)
VD (all)
Ic
Fig. 3 Switching time and SC test circuit
Fig. 4 Switching time test waveform
VCIN Short Circuit Current
P, (U,V,W,B) A
IN Fo
Constant Current SC Trip
Pulse VCE
VCIN (15V)
Ic
VD (all)
U,V,W,B, (N)
Fo toff(SC)
Fig. 5 ICES Test
Fig. 6 SC test waveform
IPM' input signal VCIN (Upper Arm)
0V
IPM' input signal VCIN (Lower Arm)
1.5V
2V
1.5V
t
0V
2V
1.5V
2V
t
tdead
tdead
tdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
Fig. 7 Dead time measurement point example
May 2009 5
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
P
20k 10
VUP1
Vcc
OT OUT Si
VD
IF
UP VUPC
0.1
In GND GND Vcc OT OUT Si In GND GND Vcc OT OUT Si In GND GND Vcc Fo OT OUT Si
+ -
U
VVP1
VD
VP VVPC VWP1
V
M
VD
20k
WP VWPC
W
IF
10
UN
0.1
In GND GND N OT
20k
IF
10
Vcc VN Fo In
OUT Si
0.1 20k
GND GND VN1
10
Vcc Fo In
OT OUT Si
VD
IF
WN
0.1
VNC
GND GND
5V
1k
Fo
Rfo
: Interface which is the same as U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ; Design the PCB pattern to minimize wiring length between opto-coupler and IPM's input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler. Fast switching opto-couplers: tPLH, tPHL 0.8s, Use High CMR type. Slow switching opto-coupler: CTR > 100% Use 3 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system.
* * * * * * *
May 2009 6
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL)
COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V)
450
Tj = 25C
3.0 2.5 2.0 1.5 1.0 0.5 0
COLLECTOR CURRENT IC (A)
400 350 300 250 200 150 100 50 0 0 0.5 1.0
VD = 17V
VD = 15V
15V 13V
Tj = 25C Tj = 125C 0 100 200 300 400 500
1.5
2.0
2.5
3.0
COLLECTOR-EMITTER VOLTAGE VCE(sat) (V)
COLLECTOR CURRENT IC (A)
COLLECTOR RECOVERY CURRENT -IC (A)
COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL)
DIODE FORWARD CHARACTERISTICS (TYPICAL) 103
7 5 3 2
COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V)
2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 12 13 14 15 IC = 200A Tj = 25C Tj = 125C 16 17 18
VD = 15V
102
7 5 3 2
101
7 5 3 2
100
Tj = 25C Tj = 125C 0 0.5 1.0 1.5 2.0 2.5 3.0
CONTROL POWER SUPPLY VOLTAGE VD (V)
EMITTER-COLLECTOR VOLTAGE VEC (V)
SWITCHING TIME tc(on), tc(off) (s)
SWITCHING TIME ton, toff (s)
SWITCHING TIME (ton, toff) CHARACTERISTICS (TYPICAL) 101 VCC = 300V 7 VD = 15V 5 Tj = 25C 4 Tj = 125C 3 Inductive load
2
SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS (TYPICAL) 100
7 5 4 3 2
tc(off)
toff 100
7 5 4 3 2
10-1
7 5 4 3 2
tc(on) VCC = 300V VD = 15V Tj = 25C Tj = 125C Inductive load 2 3 5 7 102 2 3 5 7 103
ton
10-1 0 10 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 COLLECTOR CURRENT IC (A)
10-2 0 10 2 3 5 7 101
COLLECTOR CURRENT IC (A)
May 2009 7
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
SWITCHING LOSS CHARACTERISTICS (TYPICAL)
SWITCHING LOSS Eon, Eoff (mJ/pulse)
12 VCC = 300V 11 VD = 15V Tj = 25C 10 Tj = 125C 9 Inductive load 8 7 6 5 4 3 2 1 0 0 40 80 120
0.7 0.6 0.5 0.4 0.3 0.2 0.1 trr Irr
70 60 50 40 30 20 10 0 40 80 120 160 200 0 240
Eoff
160
200
240
0
COLLECTOR CURRENT IC (A)
COLLECTOR RECOVERY CURRENT -IC (A)
SWITCHING LOSS Err (mJ/pulse)
SWITCHING RECOVERY LOSS CHARACTERISTICS (TYPICAL) 6 VCC = 300V VD = 15V 5 Tj = 25C Tj = 125C 4 Inductive load 3 2 1 0
ID VS. fc CHARACTERISTICS (TYPICAL) 60 50 40 VD = 15V Tj = 25C Tj = 125C N-side
ID (mA)
30 20 10 0
P-side
0
40
80
120
160
200
240
0
5
10
15
20
25
COLLECTOR RECOVERY CURRENT -IC (A)
fc (kHz)
UV TRIP LEVEL VS. Tj CHARACTERISTICS (TYPICAL) 20 UVt 18 UVr 16 14
SC TRIP LEVEL VS. Tj CHARACTERISTICS (TYPICAL) 2.0 VD = 15V 1.8 1.6 1.4 1.2
UVt /UVr
12 10 8 6 4 2 0 -50 0 50 Tj (C) 100 150
SC
1.0 0.8 0.6 0.4 0.2 0 -50 0 50 Tj (C) 100 150
8
RECOVERY CURRENT lrr (A) May 2009
Eon
RECOVERY TIME trr (s)
DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 1.0 100 VCC = 300V Tj = 25C 0.9 VD = 15V Tj = 125C 90 Inductive load 0.8 80
MITSUBISHI
PM200CS1D060
FLAT-BASE TYPE INSULATED PACKAGE
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL) 100
NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j - c)
7 5 3 2
10-1
7 5 3 2
10-2 Single Pulse 7 5 IGBT part; 3 Per unit base = Rth(j - c)Q = 0.18C/ W 2 FWDi part; Per unit base = Rth(j - c)F = 0.27C/ W 10-3 -5 10 2 3 5 710-4 2 3 5 710-32 3 5 710-2 2 3 5 710-12 3 5 7100 2 3 5 7101 t(sec)
May 2009 9


▲Up To Search▲   

 
Price & Availability of PM200CS1D060

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X